Confidant: Customizing Transformer-based LLMs via
Collaborative Training on Mobile Devices

ABSTRACT

Large Language Models (LLMs) have emerged as a corner-
stone for advancing Al technologies. It changes the way we
interact with devices, websites, and information, and paves
the way for the development of highly intuitive and capable
personal assistants. Training of today’s LLMs happens in
cloud data centers due to the requirement of enormous data
sets and a significant amount of computing power. Despite
extensive research in continuous learning and mobile edge
computing, fine-tuning pre-trained LLMs using resource con-
strained devices like commodity smartphones remains highly
under-explored. In this paper, we propose Confidant, a prac-
tical collaborative training framework that allows modern
LLMs to be fine-tuned across multiple off-the-shelf mobile
devices. To this end, Confidant firstly partitions an LLM
into several sub-models, allowing each of them to fit in the
memory of a mobile device. Multiple mobile devices then
collaborate in training the LLM, employing a novel pipeline
parallel training approach to accelerate the training process.
Confidant also encompasses an inter-device dynamic model
partitioning and intra-device multi-processor scheduler to
minimize the training time across heterogeneous systems. To
ensure resilient distributed training, Confidant incorporates
a hybrid fault tolerance mechanism to proactively manage
potential device and network failures. We fully implemented
Confidant in C++/Python, and deployed it on a diverse range
of mobile devices. Our experimental results demonstrate
that Confidant excels in achieving computation-, memory-
efficient, and robust customization of LLMs across mobile
devices - it successfully fine-tunes billion-sized LLMs using
three mobile devices, and achieves up to 5.56 times LLM
training acceleration.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as
BERT [9], GPT [2, 27, 29], LLaMA [37], Phi2 [47], have gar-
nered significant attention in the field of natural language
processing (NLP). These advanced models are trained and
typically served by the cloud due to the prohibitive cost of
training and inference [11] — Meta recently has unveiled
its foundational training infrastructure for LLaMA-3, which
utilizes two 24k H100 GPU clusters [24], and OpenAl has
paused, for several times, upgrades to ChatGPT Plus due
to overwhelming inference demand and the requirement of
massive amount of compute capacity.

With the increase of edge and mobile computing power,
on-device model training becomes popular in the era of deep
learning. On-device model training allows a pre-trained model
to learn domain- and user-specific knowledge, and ensures
that personal and sensitive data is processed without leaving
the local network. It harnesses provisioned but not actively
utilized local computing resources, lowering the prices of
running Al applications. It is also less dependent on network
connectivity, providing a lower inference latency and higher
reliability. With the unparalleled advancements in genera-
tive Al in this paper, we seek to answer the question that
how off-the-shelf mobile personal devices can work collectively
to fine-tune modern LLMs?

We list two motivating scenarios that could greatly benefit
from such systems. (1) Personal and Family Chat Assistant.
Many of us nowadays possess multiple mobile devices, in-
cluding smartphones, pads and laptops. Collaborative fine-
tuning LLMs using private data and these mobile devices
would allow us to have personal/family assistants accessible
exclusively to family members within the home network, and
revolutionize the way we interact with technology, promis-
ing a future where smart living is not just integrated but
deeply personalized to the unique dynamics of each house-
hold. (2) Event Chat Assistant. Domain-specific LLMs play
a pivotal role in elevating user experience and customer in-
teractions. Imagine you are organizing a large event like
academic conferences. It would be extremely helpful to the
participants if they could query near real-time event-related
information (e.g., a summary of a talk given earlier today) in
natural language. Such domain-specific LLMs can possibly
be customized (e.g., via the event mobile app) by a pool of
devices of the event participants.

Compared with on-device training of traditional deep
neural networks (DNN) like convolutional neural networks
(CNN) [4, 12, 39] and recurrent neural networks (RNN) [17,
38], local training of transformer-based LLMs has been much
less studied. In fact, executing large language models on mod-
ern mobile hardware and software platforms poses signifi-
cant challenges, and there are currently no solutions readily
available for LLMs training on mobile devices like smart-
phones. The reasons are threefold. First, both training and
inference of an LLM require way more memory than tradi-
tional neural networks. As will be shown in Section 2, it is
not always feasible to fit in modern LLMs, even after parti-
tioning, on commodity mobile devices. Second, despite the
prevalence of mobile accelerators, platform and software

support for LLM training on mobile hardware is still lacking.
On one hand, key operators in modern LLMs like Layer-
Norm and Embedding are not yet supported by mobile deep
learning frameworks (e.g., MNN [16]). On the other hand,
a large number of mobile devices like smartphones do not
have CUDA-capable GPUs, and OpenCL, an alternative com-
puting library that mobile GPUs often use, provides much
higher computation latency on par with mobile CPUs (as
shown in Section 2.1). The heterogeneity of mobile SoCs only
exacerbates the problem. Third, training across a group of
mobile devices is more prone to failures, and a fault tolerant
training mechanism tailored for mobile devices is yet to be
designed. Existing fault tolerance studies [4, 21] either focus
on robust convergence in data-parallel training (e.g., feder-
ated learning), which does not apply to mobile LLM training
where memory is the bottleneck, or deal with failures in a
passive way, which inevitably adds up the recovery delay.

To address these challenges, we introduce Confidant,
a collaborative training framework that enables LLM fine-
tuning on various mobile devices including smartphones
and laptops. In a nutshell, Confidant partitions an LLM into
several sub-models, and deploys them across multiple mobile
devices to collaboratively fine-tune an LLM using a novel
pipeline parallel training approach. To cope with device het-
erogeneity, Confidant introduces a memory-aware dynamic
model partitioning technique, which estimates the real-time
memory and computing capacity of participating devices,
and partitions and places sub-models accordingly to min-
imize the total training time while satisfying the memory
constraints on each device. Based on the parallel nature of
attention heads in LLMs, we propose a novel intra-device
multi-processor scheduler that can optimally allocate differ-
ent numbers of attention heads to heterogeneous mobile pro-
cessors. To reduce recovery delay when faults happen during
training, Confidant employs a hybrid fault tolerance mech-
anism that combines legacy passive fault tolerance design
with a novel proactive adaptation method, which leverages
device dynamics to preemptively address types of training in-
terruptions led by device mobility, network failure or power
depletion. Last but not least, we develop a cross-framework
adapter in C++ and Python to enable collaborative train-
ing across devices utilizing different DNN frameworks. We
deploy Confidant and evaluate its performance across var-
ious mobile devices including mobile phones and laptops.
Experiment results demonstrate that Confidant achieves fast,
memory-efficient, highly robust, and widely applicable edge
collaborative training of LLMs.

We summarize our main contributions as follows:

e We propose a collaborative edge training framework
called Confidant that uses pipeline parallel training

to fine-tune LLMs across multiple edge devices us-
ing different DNN frameworks. To the best of our
knowledge, this marks the first implementation of
collaborative training for Transformer-based LLMs
on edge devices, including mobile devices.

e We propose the memory-aware dynamic model par-
titioning and the novel intra-device multi-processor
scheduler to satisfy the memory constraints of the
participating devices while speeding up the collab-
orative edge training. We also enable collaborative
training across DNN frameworks through a cross-
framework adapter.

e We introduce a hybrid fault tolerance mechanism that
consists of both the passive fault tolerance method
and a novel proactive fault tolerance method, which
jointly provide a more robust fault-tolerance capabil-
ity.

e We deploy Confidant on a set of commonly used
mobile devices and comprehensively evaluate its per-
formance. Evaluation results prove the efficiency in
time and memory, high robustness, and broad appli-
cability of Confidant, where 1.13 to 5.56 times accel-
eration is achieved in the experimental settings. We
also fine-tune billion-sized LLMs using only three
mobile devices.

2 BACKGROUND AND MOTIVATION

We begin by characterizing the execution of LLMs on mobile
devices in Section 2.1. Afterwards we introduce pipeline
parallel training and the problems of directly applying it to
fine-tuning LLMs on mobile devices in Section 2.2.

2.1 Executing LLMs on Mobile Devices

We first motivate the design of Confidant by examining the
characteristics of executing LLMs on mobile devices.

(1) Excessive Memory Requirements of LLMs vs. Limited
Memory on Mobile Devices. Compared to data center servers
and high-end edge devices like NVIDIA Jetson nodes, com-
modity mobile devices (e.g., smartphones) have much less
on-board memory, making LLM fine-tuning challenging. We
conducted a preliminary experiment to show the memory
usage of fine-tuning (with batch size set to 8) four state-of-
the-art LLMs using PyTorch. We also list the parameter sizes
of these LLMs, and the on-board memory of four recently
released smartphones for comparison. It can be seen from
Table 1 that considering the memory taken by mobile OS and
apps, current mobile devices can hardly meet the memory
demand for LLM fine-tuning.

(2) The Need of Collaborative Training vs. Highly Dynamic
Compute, Memory and Energy Supplies. The excessive mem-
ory requirements of LLM fine-tuning calls for a collaborative

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

Table 1: Fine-tuning memory usage of LLMs and mem-
ory of the mobile devices released recently.

LLMs Param. Mem. Usage Mobile Devices Mem.
BERT-Base 110M 5.8GB Huawei Mate 60 Pro 12GB
GPT-2-Medium 355M 18.5GB Google Pixel 8 Pro 12GB
Phi-2 2B 46.5GB iPhone 15 Pro 8GB
LLaMA-7B 7B 58.3GB Galaxy S23 Ultra 12GB

way to train LLMs with a group of mobile devices. Nonethe-
less, the highly dynamic compute, memory and energy sup-
plies of mobile devices make the design of a collaborative
training mechanism extremely difficult. Unlike enterprise-
grade servers, the majority of mobile devices share their
memory between CPU and GPU [15], and could be subject
to energy depletion and network disconnection due to the
nature of mobility. All of these factors need to be considered
in the design of a collaborative training framework.

(3) Insignificant Differences in LLM computation Latency
between Mobile CPUs and GPUs. While programming models
and platforms like CUDA [26] significantly facilitate GPU
acceleration by leveraging its parallel processing capabilities,
non-CUDA-capable mobile GPUs exhibit a similar or even
higher LLM computation latency than traditional mobile
CPU-centric approaches. To illustrate this, we conducted
CPU-only and GPU-only experiments on a Redmi K50, and
measured the compute time of one batch forward propaga-
tion under different batch sizes for two models: BERT-base
and GPT2-medium, respectively. The experiments are based
on Mobile Neural Network (MNN) [16], a state-of-the-art
mobile deep learning framework. Note that we use OpenCL
as the computing library for GPU since CUDA is not sup-
ported on the mobile platform. As demonstrated in Figure 1a,
the compute latency employing CPU and GPU are of the
same order of magnitude. We have also measured the over-
head of copying tensors from CPU to GPU when GPU is
used for computation. As shown in Figure 1a, the copy over-
head is negligible compared to forward computation time
in Figure 1a. This suggests that one should leverage multi-
ple processors including both CPUs and GPUs on a mobile
device for parallel computation of LLM, thereby enhancing
training efficiency. Unfortunately, today’s mobile deep learn-
ing frameworks only support DNN training on one kind of
processor.

2.2 Pipeline Model Parallel Training

To address the issue of insufficient memory on a single mobile
device for fine-tuning LLMs, one common solution is to apply
pipeline model parallel training to multiple mobile devices
for collaborative model training [4]. Pipeline model parallel
training was originally introduced for training CNN models
on GPU clusters [25]. Since then, several works [5, 22, 28]

60 —e— BERT CPU 1 OOO
50 BERT GPU /
~40 GPT-2 CPU %\ 800
NS —— GPT-2 GPU £ e BERT
é 30 QE) 600 —— GPT=2
&20 £ 400
10— ’ 200
0 .———0—/ ——o— ¢
1 2 4 8 2 4 8
Batch Size Batch Size

(a) Forward compute la-
tency

(b) Tensor copy overhead

Figure 1: The copy overhead and computation over-
head of forwarding BERT-base and GPT2-medium sep-
arately on Redmi K50.

have applied this technique to training LLMs on GPU clusters
since the memory of a single GPU may also be insufficient
for training an LLM. This approach optimally divides a DNN
model into multiple sub-models based on the compute ca-
pacities of GPU servers, and deploys each sub-model onto a
separate GPU node. During training, each GPU sequentially
processes a batch through forward and backward compu-
tations. To expedite the training process, GPUs forward a
batch with stale sub-model weights, eliminating the need to
wait for weight updates from the backward pass. To ensure
model convergence, two techniques are introduced: the one-
forward-one-backward (1F1B) rule and weight stashing. The
1F1B rule dictates that forward and backward pass should
alternate, with consecutive operations executed on different
batches. Weight stashing involves storing the weights used
in forward pass so as to guarantee consistent weights during
backward propagation of the same batch.

. Forward

. Backward

Device 3 -- of 0§

Time

Figure 2: An illustration of the pipeline parallel train-
ing technique.

Figure 2 illustrates the concept of pipeline parallel training
using three devices as an example, where device 1 is the cen-
tral node that owns the raw data, and other two are worker
nodes. ig®" and if®" represent the forward and backward pass
of the i-th training batch with weights of the version number
ver, respectively. Consider the training of batch 1 in device
1, instead of waiting for the backward pass of batch 0, device
1 forwards batch 1 using the same weights as those used by
batch 0. Following the 1F1B rule, device 2 forwards batch

3 after backward pass of batch 1, immediately followed by

the backward pass of batch 2. For weight stashing, when
device 2 backwards batch 2, instead of using the weights
of version 2, it uses the weights with version 0, which are
the same weights utilized in the forward pass of batch 2. It
can be observed from Figure 2 that pipeline parallel train-
ing significantly reduces the idle time of each device, hence
speeding up the training process. Despite of active research
on pipeline model parallel training, there is no viable solu-
tion at this moment that allows a set of off-the-shelf mobile
devices to collectively train LLMs.

3 SYSTEM DESIGN

o g ——

/ o & s & \
Pipeline (3]

‘ Parallel Data Shape Type Info 1

[Training ": : -‘ . |

S ko O

880 - 0 o o

- (S @SS
processor = = = 3 I

| Scheduler o o o o

[|
Forwarding ==p I

I Backwarding 4= @

\ Passive FT Proactive FT ,
\ O S S S EEE EE S S S . .. -— /

Figure 3: The system overview of the proposed Confi-
dant

3.1 Design Overview

Figure 3 provides an overview of the proposed Confidant,
designed for distributed pipeline parallel training to collabo-
ratively fine-tune an LLM across heterogeneous edge devices.
The central node, responsible for training, is the device who
may own the training data or have the most significant com-
putational resources, such as a desktop in a household envi-
ronment. The distributed training process starts by searching
for available devices, denoted as worker nodes, within the
local area network (LAN). Then, the central node optimally
divides an LLM into several sub-models according to the com-
puting, memory and communication resources of each de-
vice, utilizing the proposed Memory-aware Dynamic Model

Partitioning scheme, which will be introduced in Section 3.2.
This scheme is executed periodically throughout the entire
distributed training process to adapt to the time-varying re-
sources of edge devices. To address compatibility challenges
among different DNN frameworks, such as MNN and Py-
Torch, Confidant incorporates a Cross-framework Adapter,
enabling collaborative training across various devices. Each
participating device also exploits a novel Intra-device Multi-
processor Scheduler, making full use of the device’s comput-
ing resources by optimally scheduling available processors
for parallel computation of attention heads. Additionally,
Confidant integrates a Hybrid Fault Tolerance Mechanism
that combines both proactive fault tolerance (Proactive FT)
and passive fault tolerance (Passive FT) methods, to combat
potential faults during the training, enhancing the system’s
resilience to unforeseen issues.

3.2 Memory-aware Dynamic Model
Partitioning

To avoid assigned sub-model exceeding the available memory
limit of participating devices, we present a memory-aware
dynamic model partitioning in this section, which calculates
the real-time optimal partition points by jointly considering
the time-varying computing capacity, memory limits, and
bandwidth of each participating device.

We first estimate the memory usage (GB) of each device
Mior; by using the following formula,

Mtot,i = Mmodel + Mgrad + Mpipe,i + MaCt,is (1)

where Mpodel €quals the memory usage of parameters in the
local sub-model and Myaq represents the memory usage of
temporary tensors that need to be stored during gradient
updates. Here i represents the i-th device in the pipeline
parallel training following the computing order. My is
the memory usage introduced by the weight stashing in the
pipeline parallel training. Since for a pipeline parallel training
with N devices, there are (N—i—1) extra versions of trainable
weights stored in memory, Mpipe; equals (N — i — 1) times
the memory usage of trainable parameters for the i-th device.
M,t; denotes the memory used for storing intermediate
activation values during the forward and backward.

Note that the embedding layer is generally not updated
in fine-tuning LLMs. M, can be approximated by the total
memory usage of the activation in the encoders and decoders,
given by [20],

h
Moees = (N — i) x sbh(18 + szf + 5%) xC (2)

where a, b, s, h, and hy represent the number of attention
heads, the batch size, the sequence length, the hidden dimen-
sion size, and feed-forward dimension size respectively. Here
C is a normalization factor that converts the unit into GB.

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

Then during the training, the central node periodically
collects the time required to compute the local sub-LLM, the
memory constraint, and the bandwidth between any two
nodes from each worker node. Following [4], the optimal
model partition points are computed iteratively by

A(p,n—1)
A(ln) = 1mir<11 max { 2 X TC”p_2
) T p+1D)

Vie[n:1], (3)

forn=1,..,Nandl = 1,.., L, where A(l, n) denotes the time
used by the slowest device among n devices to collaboratively
train a [-layer model in the optimal pipeline-parallel training
manner. For the k-th node, TX (i, j) indicates the training time
from layer i to layer j and Tcki denotes the time of transmitting
the output of layer i to the (k +1)-th node. To exclude model
partitioning points that do not meet the devices’ memory
constraint, we compare the i-th node’s memory constraints
with the estimated memory usage of the sub-model assigned
to it. If the memory constraint is not satisfied, we set Tei to
infinity, which ensures that such partition points will not be
chosen as the optimal solution.

3.3 Intra-device Multi-processor Scheduler

In this section, we introduce a novel intra-device multi-
processor scheduler that optimally assigns varying numbers
of attention heads to the available processors on a device.
While existing work such as Megatron[33] has leveraged
parallel computation of attention heads to accelerate the
computation of LLMs in GPU clusters, it primarily targets
homogeneous GPUs. However, distributing attention heads
evenly across multiple heterogeneous processors on mobile
devices may not minimize computation time efficiently. The
proposed scheduler takes into account the computing ca-
pacity of heterogeneous processors by operating two steps:
processor profiling and attention head allocation, which will
be detailed in the following.

Processor Profiling. This step starts by identifying all avail-
able processors on a device. For each processor, we then pro-
file the computation time for varying numbers of attention
heads. Note that a processor may have multiple compute li-
braries supporting DNN computations, such as OpenCL and
Vulkan for mobile GPUs. In such case, we select the fastest
computation time by available libraries as the computation
time for that processor. We denote the profiling result of
computing k attention heads with the processor j as Pj].‘. All

P}‘ values collectively form a profiling dataset P for use in
the subsequent attention head allocation step.

Attention Heads Allocation. This step utilizes a binary
search approach to allocate attention heads to each hetero-
geneous processor on a device to minimize the overall com-
putation time, as illustrated in Algorithm 1.

Assume that our optimization goal is to allocate K at-
tention heads to M available processor to minimize their
computation time. We initiate the lower bound [to 0 and the
upper bound r to the minimum time for any processor to
compute all K attention heads, serving as the starting point
for the binary search. We also initialize a global allocation
vector S to store the allocation strategies discovered during
this process. In each iteration, we calculate the mid-value as
mid = (I +r)/2. We then check the feasibility of allocating
attention heads such that the overall computation time is
close to mid. Particularly, we initialize a empty allocation
vector S’ for the current validation. For each processor j, we
find the k in [1, K] with Pj’.C closest to mid, denoted as O;.
If the absolute difference between the selected P}‘ and mid
exceeds a given threshold €, we set O; = 0, indicating that
we skip the processor computing either too fast or too slow.
We then include the pair (j,O;) in S’. If the sum of all O;
is greater than or equal to K, it implies the existence of an
allocation strategy where the overall computation time is
approximately mid. In this case, we set S = S’ and adjust
the upper bound r of the binary search to mid — o, where
o is a relatively small value to prevent infinite looping. If
the sum of all O; is less than K, it implies that computing
all attention heads within mid time is unattainable. In such
cases, we adjust the lower bound ! to mid - o. The binary
search iteration concludes when ! > r. Finally, attention
heads are distributed to the selected processors according
to S. These attention heads are then computed in parallel,
thereby expediting the computation of Transformer-based
LLMs on edge devices.

3.4 Hybrid Fault Tolerance Mechanism

In this section, we present the proposed hybrid fault toler-
ance mechanism which integrates both passive and proactive
fault tolerance methods, offering a complementary and com-
prehensive fault tolerance capability.

3.4.1 Passive Fault Tolerance. Passive fault tolerance, ini-
tially proposed in [4, 21], requires each device to replicate
the weights of its local sub-model to other nodes periodically.

When a failure occurs, the central node identifies the failed
nodes through broadcasting and initiates the three-phase
recovery process to restore training. Firstly, in the model re-
partitioning phase, the central node redistributes the model
among the remaining nodes. Subsequently, in the weight re-
distribution phase, each surviving node retrieves the weights
of the new sub-model from local replication or other nodes.
Finally, in the commit phase, each node constructs the new
local sub-model, and the training resumes. Although passive
fault tolerance effectively addresses various faults during
collaborative training, it introduces some time overhead,

Algorithm 1: Allocation of attention heads on mul-
tiple processors

Input: The profiling set P, total attention heads K, total available processors
M, threshold €.
Output: The allocation strategy S = {(j, k;)|j =1,...M,k; =0,1,...,K}.
Initialize [« 0,7 « min PX S « {};
j=1,..M J

-

while ! < r do
mid «— (I+7r)/2;
if isValid(mid, K, P) then
| remid-o;

Yo a e wm ok W N

else
| [« mid+o;
end
end

10 return S;
11 Function isValid (mid, K, P):
12 Initialize totalHeads « 0, S’ « {};
13 for j < 1to M do
14 kj =arg kf]lml(abs(P]’.< — mid);
15 if abs(PjI.ci — mid) > € then
16 ‘ kj < 0;
17 end
18 totalHeads « totalHeads + k;;
19 insert (j, kj) into S;
20 end
21 if totalHeads >= K then
22 S« 8
23 return frue;
24 else
25 ‘ return false;
26 end

including the time to detect the fault (detection time), re-
distribute the weights (redistribution time), and retrain the
batches that have been forwarded but not yet backwarded
when the fault occurred (retrain time).

3.4.2 Proactive Fault Tolerance. To reduce the time overhead
in addressing node failures, we further introduce a novel
proactive fault tolerance mechanism, which comprises three
phases, i.e., the notification phase, the proactive substitution
phase, and the commit phase.

Notification Phase. When a worker node is about to quit
the training due to its device dynamics, referred to as the
quitting node dg, it notifies the central node at least & seconds
before quitting. To eliminate the time overhead for recov-
ering, the value of & should be greater than or equal to the
time needed to complete the Proactive Substitution Phase,
as described later.

Proactive Substitution Phase. Upon receiving the notifi-
cation from dg, the central node initiates the collection of
computing capacities from all idle devices in the LAN. If
no idle devices are available, the central node resorts to the
passive fault tolerance mechanism. However, if there are idle
devices, the central node proceeds to identify a substitute
node that is the most compatible. To determine compatibility,
each idle device sends back the computing capacity vector
(CCV) h; and the remaining battery b; (mAh) to the central

node. Specifically, h; = {t;1, tis, ..., ti1 }, where t; ; denotes
the time required for computing j encoders, and L is the total
number of encoders. Including different encoder numbers is
essential because t; ; is not linear in j due to computation op-
timization in DNN frameworks [46]. The remaining battery
b; is a value between 0 and 1, where a higher value indicates
a greater remaining battery capacity.

Using h; and b;, the central node adopts the metric Device
Compatibility (DC) to assess the compatibility of an idle
device:

e, = b

Hi+n
where p denotes the portion of the remaining training pro-
cess, which equals (B; + (T — Touy) * B) /T = B. Here, T, B, Toyr
and B; denote the total epochs, the total batches, the current
epoch, and the remaining batches of the current epoch when
the proactive fault handler is triggered, respectively. 1 is a
relatively small value to avoid division by 0. H; is derived by

4

first summing up all values in h; to H; and normalized by
H; = (H; — Hpin) / (Hmax — Hmin), where Hyay and Hp, are
the maximum value and the minimum value among all H;.
Similarly, b; is normalized to Bi by (b; — bmin)/ (bmax — bmin)-
As it can be seen from Eq. 4, the selection of substitute node
considers both computing capacity and the remaining bat-
tery of the device to ensure training stability. However, as
training progresses, i.e., with the decrease of p, attention to
the device battery diminishes. The central node selects the
device with the highest DC as the substitute node, which
then retrieves all weights from the sub-model of d,.
Commit Phase. The substitute node creates the correspond-
ing sub-model and notifies the central node. Subsequently,
the quitting node exits the training without interrupting the
training process. The central node then broadcasts a commit
message to all worker nodes, informing them of the change
in one worker node. Finally, all the nodes retrain the batches
whose training was interrupted during the proactive fault
handling, resuming the training process.

3.5 Cross-framework Adapter

Edge devices may utilize various DNN frameworks, resulting
in different data formats for the intermediate results of DNN.
To address this, Confidant integrates a Cross-framework
Adapter designed to convert intermediate results output by
different devices into a unified structure compatible with
each other, which comprises the following four components:

e Data: A one-dimensional array storing all the data
of a tensor, acquired by flattening the tensor.

e Tensor Shape: A one-dimensional array that char-
acterizes the shape of a tensor, e.g., [8, 256,4096].

e Data Type: An integer indicating the type of the
data, e.g., int8, int32 and float64.

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

e Framework Specific Info: A map storing specific
information required by different frameworks. One
instance can be {MNN : “NHWC”}, which includes
the information needed by the MNN framework.

Before transmission to the next device, this adapter con-
verts tensors into the described four components. Upon re-
ceipt, these components are then converted back into tensors
suitable for the framework used by the receiving device.

4 IMPLEMENTATION

We have implemented and deployed Confidant on various
devices with about 10,900 lines of code (LoC) in total. For
mobile devices, we develop Confidant as an application (C++:
~3,200 and Java: ~ 3,600 lines of code (LoC)). MNN[16] ver-
sion 2.7.2 serves as the deep learning framework within the
Android application. We choose MNN for its support for
training on mobile devices and its superior performance in
terms of computation time and memory usage, as demon-
strated in [39]. Given that MNN is implemented in C++ while
our application is developed in Java, we utilize the Java Na-
tive Interface (JNI) [42] to invoke C++ functions from within
the application.

Our work is the first attempt to implement the Trans-
former model for training within the MNN framework, with
plans for the source code to be open-sourced in the fu-
ture. The current approach for deploying Transformer-based
LLMs on MNN involves converting a PyTorch-formatted
model into an MNN-formatted one. However, the derived
MNN-formatted model is limited to inference and lacks par-
titioning capabilities. Hence, we reimplement key operations
in LLM, such as LayerNorm, RMSNorm, Embedding, and
complex number computations, utilizing fundamental MNN
operators. We then implement LLM models with these oper-
ations, which are compatible with training and model parti-
tioning.

Loading pre-trained weights of an LLM from the corre-
sponding PyTorch model involves the following steps: We
first convert the PyTorch-formatted pre-trained weights into
the ONNX format [8], an open standard for representing
machine learning models. Then we employ the MNNCon-
vert tool provided by MNN to convert the ONNX-formatted
weights into the MNN format, which can then be loaded into
the MNN-formatted model.

To custom MNN to our specific requirements, we make
modifications to its source code. In pipeline parallel training,
the device may need to call step(x) with x being gradient
tensors. Thus, the first modification we made is to extend
MNN’s support for passing tensors to the step(x) function,
which initially only supported scalars. Additionally, to facili-
tate parallel computation of multiple attention heads across
multiple processors, we create a separate computation graph

Table 2: Device Specifications

Device SoC CPU GPU Memory

Redmi K50 Dimensity 8100 Cortex-A78 Mali-G610 12GB
Redmi 10X Pro Dimensity 820 Cortex-A76 Mail-G57 MC5 8G
Mi 10 Lite Snapdragon 765G Cortex-A76 Adreno 620 8G
Huawei P30 Kirin 980 Cortex-A76 Mali G76 MP10 8G
Samsung A9 Snapdragon 660 Kryo 260 Gold Adreno 512 4G
Colorful X15-AT - Core i7-13650HX - 32G
Macbook Pro M1 M1 Apple-designed 16G
Jetson Nano —_ ARM Cortex-A57 Nvidia Maxwall 4G

for each processor. Within these graphs, we allocate different
numbers of attention heads as determined by the proposed
multi-processor scheduler, thus enabling parallel computa-
tion across multiple processors.

For edge devices that support training with PyTorch, we
execute Confidant as a Python program (Python: ~ 4,100
LoC) using PyTorch version 2.0.1. We directly load pre-trained
PyTorch-formatted weights available online into these de-
vices.

To facilitate data transmission between devices utilizing
different DNN frameworks, we rely on standard HTTP re-
quests and lightweight web frameworks to handle communca-
tion requests from other devices. We implement with Java
Spark [7] for the mobile application and Flask [6] for the
Python program, respectively. To implement the proposed
cross-framework adapter, we encapsulate the four data com-
ponents using JSON (JavaScript Object Notation).

5 EVALUATIONS
5.1 Experiment Settings

In this section, we evaluate the proposed Confidant on vari-
ous commercially available edge devices, including mobile
devices, with detailed specifications provided in Table 2.
Our evaluations cover three representative LLMs: BERT [9],
GPT?2 [29], Phi2-2.7B [47] and LLaMA-7B [37], representing
Transformer-based LLMs of varying sizes. We consider fine-
tuning tasks such as classification using the Conll2003 [31]
dataset for BERT, question answering with the SQuAD2.0 [30]
dataset for GPT2 and GPT2-Medium, and text generation
employing the Alpaca [36] dataset for Phi2-2.7B and LLaMA-
7B. Table 3 summarizes the specifics of these LLMs and their
corresponding datasets, where #Blocks, #Heads and #Embed-
ding Size represent the total number of encoder or decoder
blocks, the number of self-attention heads in each block,
and the feature dimension for each token in the input sen-
tence, respectively. Note that all evaluations in this section
are performed with no other user processes or user applica-
tions running in the background on the participating mobile
devices.

I Slowest Device
800

XX Fastest Device B PipeDream

EI FTPipeHD #3

700
w

% 600
£ 500
2400
-2 300
3 200
St

& 100

Training Time(s)

0

il
Batch Size

(a) BERT-Base

FTPipeHD #4 E=3 Confidant #3 EXA Confidant #4

5000

N
(=
(=
(=)

3000

[\
=
=]
=)

1 all il
Batch Size
(b) GPT2-Medium

Figure 4: The training time comparisons using different LLMs under different batch sizes. “4N”: pipeline parallel

training using N device.

Table 3: Model Details and Corresponding Dataset

Model #Blocks #Heads #Embedding Size Dataset
BERT-Base 12 12 768 Conll2003
GPT2-Medium 24 16 1024 SQuADZ2.0
Phi2 32 32 2560 Alpaca
LLaMA-7B 32 32 4096 Alpaca
Table 4: Evaluation Device Setting
Model Confidant #3 Confidant #4
BERT-Base Redmi K50 . . .
Mi 10 Lite Redmi K50, Mi 10 Lite

GPT2-Medium Redmi 10X Pro, Huawei P30

Redmi 10X Pro

5.2 Training Performance

In this section, we evaluate the training performance of Con-
fidant executing the fine-tuning tasks described above, in
terms of the training time and memory usage.

5.2.1 Model Performance. We first evaluate the model per-
formance of using Confidant to fine-tune an LLM, where
we use the model performance of fine-tuning an LLM in a
traditional way as the baseline. For both fine-tuning ways,
we set the total epoch to 3. To reduce the experiment time,
we conduct this experiment on a server and the results are
listed in Table 5, where we utilize 3 independent processes
to simulate three devices in Confidant. Due to limitations in
server resources, we employ LoRA [13], a parameter-efficient
fine-tuning technique, for Phi2 and do not validate the per-
formance of LLaMA. Note that for different datasets, we
adopt different evaluation metrics, which are provided in
the footnotes of Table 5. It can observed from Table 5 that
Confidant almost does not cause any accuracy drop, and

Table 5: Model Performance Comparisons

Task Traditional Confidant

BERT-Base + Conll2003" 97.70% 97.66%
GPT2-Medium + SQuUAD2.0? 72.55%/82.23% 73.03%/83.05%
Phi2 + Alpaca® 0.52 0.66

! Token classification accuracy
2 Exact match / F1 score
3 Test dataset loss

even performs slightly better than traditional training, thus
guaranteeing the model performance of Confidant.

5.2.2 Training Time. Then, we measure the total time of for-
warding and backwarding ten batches considering different
batch sizes. The number of mobile devices participating in
Confidant is set to 3 or 4, as listed in Table 4. For comparisons,
we consider three baseline scenarios: (1) Fine-tuning an LLM
on a single device, (2) Conventional pipeline parallel training
by average partitioning of the LLM (PipeDream [25]) and
(3) Conventional pipeline parallel training using computing
capacity-aware model partitioning (FTPipeHD [4]). In base-
line (1), we select the mobile devices with the highest and
lowest computing capacities from Table 2 as the experiment
devices. In cases where a device’s memory is not sufficient for
the entire model, we adopt an incremental measurement ap-
proach, where during both the forward and backward passes,
we load only a portion of the model that fits into memory for
computation, releasing it before loading the next segment.
This incremental measurement approach is consistently ap-
plied in subsequent evaluations as well. For baseline (2) and
(3), we choose the same devices employed by Confidant. We
record the average time for training 10 batches using the
three baselines and Confidant. The results are presented in
Figure 4.

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

As shown in Figure 4, the conventional pipeline parallel
training approach leverages the resources of multiple devices
to accelerate training. The training time decreases with the
increasing number of participating devices. Compared to
training using only the fastest device, pipeline parallel train-
ing with three devices achieves acceleration ratios of 1.81x
and 1.33x on BERT-Base and GPT2-Medium respectively.
When using four devices, the acceleration ratios further in-
crease to 2.62x and 1.97x.

Confidant significantly accelerates the collaborative train-
ing compared to FTPipeHD. With three participating mobile
devices, Confidant achieves acceleration ratios of 1.75x and
2.66x on BERT-Base and GPT2-Medium, respectively. When
four devices are used, it achieves acceleration ratios of 1.45x
and 2.82x. Compared to training solely on the fastest device,
Confidant achieves acceleration ratios of 3.18x and 3.55x
under three-device configurations. For the four-device con-
figuration, it demonstrates acceleration ratios of 3.82x and
5.56x. These results affirm Confidant’s remarkable accelera-
tion performance for training on mobile devices.

We also note that the transmission of the output of the
sub-model on the current batch and the computation of the
next batch occur simultaneously by two threads on a mobile
device. Our evaluations show that the transmission time is
only 8% to 23% of the computation time when fine-tuning
BERT. Therefore, the transmission overhead is completely
covered by the computation of the model and, hence, can be
ignored.

5.2.3 Memory Usage. Next, we assess the memory usage
of Confidant, with the memory usage for fine-tuning on a
single mobile device as the baseline. We select three repre-
sentative mobile devices with available memory of 4G, 8G
and 12G, respectively, reflecting common memory scenarios
in mainstream smartphones. In cases where the memory of
a single device may be insufficient for LLM fine-tuning, we
record the memory consumption when accommodating the
maximum number of encoders. Additionally, we measure
the average memory usage across devices during fine-tuning
with both three and four devices under Confidant. The eval-
uation results are detailed in Table 6.

Table 6 illustrates that fine-tuning a complete LLM on a
single device becomes increasingly challenging as the model
size grows. Even the mobile device with the largest mem-
ory, i.e., 12GB, can only accommodate a limited number of
GPT2-Medium encoders. Moreover, the idle memory of a
mobile device in daily usage is unlikely to exceed 50% of the
total memory, with a portion of this memory reserved for
temporary mobile applications. Consequently, the available
resources for fine-tuning LLMs on mobile devices are fur-
ther constrained. Confidant effectively reduces the average

memory usage on each device through model partitioning-
based collaborative training. This allows devices with smaller
memory capacities to participate in training by handling a
subset of computations for the entire model. As the number
of devices increases, the average memory usage per device
decreases.

\o

2 (MPS) g (MPS)
E7 s (v E7 v
e a7
.§ § 6
£5 =)
2 20
— 4 ¥ — 4
2 8 32 128 2 8 32 128
Batch Size Batch Size
(a) BERT-Base (b) BERT-base
@9 —e— (GPU) @9 —e— (GPU)
g (MPS) g (MPS)
= 8 -4 (CPU) Z 8l 4 (CPU)
27 27
R £
26 £6
o0 o0
»—o] 5 I3 »—ol 51
2 8 32 128 2 8 32 128
Batch Size Batch Size

(c) GPT2-Medium (d) GPT2-Medium
Figure 5: The computation latency of the self-attention
layer of two models under various batch sizes. Left
column: Redmi K50, Right column: Redmi 10X Pro.

5.3 Multi-processor Scheduler Acceleration

In this section, we assess the performance of the intra-device
multi-processor scheduler (MPS) by comparing it with the
scenarios where only the CPU or GPU (OpenCL) is utilized.
Note that in this evaluation, when computing using only
one processor, we select the best approach among the three
methods described in Section 3.3 for computing attention
heads.

We first compare the computation time of the self-attention
layer for BERT-Base and GPT2-Medium, as depicted in Fig-
ure 5. Due to the significant difference in computation time
between different batch sizes, we adopt the logarithmic scale
for the vertical axis. When working with small batch sizes,
the computation time using MPS is comparable to using
either only the CPU or GPU. However, as the batch size
increases, the acceleration effect of MPS becomes more evi-
dent, indicating that the proposed MPS effectively leverages
processors for LLM computation.

We also compare the computation time of the entire BERT-
Base and GPT2-Medium using the MPS against using only

Table 6: Memory usage comparisons between Confidant and a single device

. Memory Usage (GB)
Model BatchSize Samsung A9 Mi 10 Lite Redmi K50 Confidant #3 (Average) Confidant #4 (Average)
4 2.7(10/12)1 3.1 3.1 2.10 1.65
BERT-Base 8 2.8(6/12) 5.5 5.5 3.17 2.43
1 2.8(10/24) 6.2 6.2 4.20 3.17
. 2 2.8(8/24) 7.0(16/24) 7.2 5.13 3.83
GPT2-Medium 4 27(5/24) 6.9(12/24) 9.8 6.57 4.73
8 2.6(2/24) 6.9(5/24) 9.8(20/24) 7.20 5.81

! (i/§): Only accommodate a maximum of i encoders while current model comprises j encoders

I Single V72 Single-MPS

1200
1000
800
600
400
200

Training Time(s)

I Single ZZ1 Single-MPS

5000 6542 7102
4000
]
;3000
2
£ 2000
£ %
= 1000 g g
, P bl Lkl
JLE il ! il il
248 1248 1248 1248 12438
Dimensity 8100 Kirin 980 Snapdragon 765G Dimensity 820 Snapdragon 660

(b) GPT2-Medium

Figure 6: Training latency comparisons between single-
device fine-tuning and MPS-based fine-tuning

the CPU, where we use two kinds of CPU to perform the
comparisons. The results are presented in Figure 6, where
X indicates that it is impractical to conduct experiments on
the specified device. The results highlight the significant ac-
celeration achieved by our proposed MPS in complete model
training. Furthermore, the MPS demonstrates versatility and
exceptional performance across different models and devices.

5.4 Hybrid Fault Tolerance Overhead

We then evaluate the performance of the proposed hybrid
fault tolerance mechanism. We consider training with three

mobile devices, along with two idle devices in LAN. We
evaluate the passive and proactive fault tolerance methods
independently.

We trigger the passive FT by manually closing the Confi-
dant application on a worker node and measure the detection
time, weight redistribution time and retrain time as described
in Section 3.4.1. For proactive FT, we trigger it by setting a
worker node to notify the central node of its exit after Con-
fidant has been running for a specified duration. We then
measure the time taken to find a substitute node (search time),
the time for the substitute node to retrieve all weights from
the quitting node (substitution time), and retrain time. For
both fault tolerance methods, we record the time required for
training to resume after being interrupted (recovery time).
The evaluation results are detailed in Table 7.

The results presented in Table 7 reveal that the detection
time in passive FT is greater than the search time in proac-
tive FT. While the weight redistribution time in passive FT
is shorter than the substitution time in proactive FT, it is
important to note that weight redistribution in passive FT
occurs during the training interruption, whereas substitu-
tion in proactive FT is carried out concurrently with training.
The retrain times for both methods are relatively similar. We
highlight that the recovery time for proactive FT is signifi-
cantly shorter than that for passive FT. This indicates that
the advantages of the proposed proactive FT in reducing the
time overhead caused by device failures.

Table 7: Recovery overhead of the passive FT and the
proactive FT

Passive FT ‘ Time (ms) ‘ Proactive FT ‘ Time (ms)

Detection 4631 Search 6325
WR 5764 Substitution 23168
Retrain 4439 Retrain 4245
Recovery ‘ 16834 ‘ Recovery ‘ 4487

WR: Weight Redistribution.

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

5.5 Cross-framework Adapter Overhead

We then assess the time overhead introduced by the cross-
framework adapter, measuring the time required to adapt the
intermediate results of three models to different frameworks
with four different batch sizes. We conduct experiments on
both the sender and receiver sides, with one device running
PyTorch and the other running MNN, respectively. The av-
erage of 10 measurements is calculated and presented in
Figure 7.

Experiments demonstrate that the time overhead of the
cross-framework adapter is negligible when compared to the
training time shown in Figure 4. It is worth noting that the
adaptation to PyTorch takes longer than the adaptation to
MNN, mainly due to the higher execution efficiency of C++
compared to Python.

BERT-Base Receive BN GPT2-Base Send BERT-Base Receive B GPT2-Base Send
B BERT-Base Send LLAMA-Base Receive B BERT-Base Send LLAMA-Base Receive
=3 GPT2-Base Receive I LLAMA-Base Send =3 GPT2-Base Receive [CJ LLAMA-Base Send

=700
£600
=]

£ 500
5 400
>

3300
gzoo
£100
< 9

Batch Size

Batch Size

(a) Nvidia Jetson Nano (b) Redmi K50

Figure 7: Conversion Overhead cross Different Devices

5.6 Energy Consumption

Finally, we measure the energy consumption of Confidant
by fine-tuning LLMs utilizing Mi 10 Lite, Redmi 10X Pro and
Redmi K50. We record the battery usage using BatteryStats
tool [1]. Specifically, we record the electricity consumption
(mAh) of fine-tuning 10 batches with BERT-Base and GPT2-
Medium utilizing Confidant and one single device, respec-
tively, as illustrated in Figure 8. We also provide the total
electricity consumption of three devices utilizing Confidant.
Figure 8 illustrates a significant reduction in power consump-
tion when employing Confidant compared to fine-tuning the
entire model on a single device. This reduction remains sub-
stantial even when considering the total energy consumption
of all three devices, showcasing a remarkable energy saving
of Confidant compared to the single-device training.

5.7 Attempts on Billion-sized LLMs

We also attempt to fine-tune LLMs with billions of param-
eters, i.e., Phi2-2.7B and LLaMA-7B, on edge devices using
Confidant. Due to the substantial memory requirements for

I Single RZXJ Confidant E== Confidant Total

=
(=}

— =
(=21
==

(=)
(=}

I
S

553
(=]

Electricity Consumption(mAh)
o0
S

(=]

(a) BERT-Base

I Single RZZ Confidant E== Confidant Total

DA (XXX]
KX 020% IR

XK KXX XX
MilOLite RedmilOXPro RedmiK50 Confidant total

(b) GPT2-Medium

Electricity Consumption(mAh)

Figure 8: Comparisons of the electronic consump-
tion between single-device fine-tuning and Confidant-
based fine-tuning.

fine-tuning these two models, we conduct LoRA-based fine-
tuning using one mobile device (Redmi K50) and two laptops
(Macbook Pro M1 and Colorful X15-AT), supported by the
proposed Cross-framework Adapter. We measure the aver-
age training time per batch and the average memory usage
of fine-tuning these two models, as listed in Table 8.

Table 8: Evaluations on Billion-sized LLMs

Model ‘ Batchsize ‘ Time per Batch Average Memory Usage

. 1 19.29s 8.27 GB
Phiz-2.78 ‘ 2 ‘ 19.46 5 10.84 GB
29.92's 12,51 GB

LLaMA-78 ‘ ‘ 88.06 s 14.10 GB

It can be observed from Table 8 that the billion-sized LLMs
are successfully fine-tuned through three mobile devices.
However, training a batch still requires a significant amount
of time, especially for the LLaMA-7B. Accelerating the train-
ing of billion-scale LLMs on mobile devices is among our
future endeavors.

6 RELATED WORKS

On-device LLM Inference. Research on on-device LLM
inference mainly focuses on accelerating the inference and

reducing memory usage. Techniques employed for speeding
up LLM inference are those commonly used in edge deep
learning acceleration, including efficient model structure [10,
32], quantization [43], feature pruning [34], and sparsifica-
tion [23]. Building upon accelerated inference, some studies
have also reduced memory usage [35, 44]. Kim et al. [18]

proposed BiLD that generates text at a low computation and
memory cost through a relatively small LLM, corrected by a
large LLM when the output of the small LLM is inaccurate. In
EdgeMoE, it only loads the LLM weights that are frequently
used in memory, with the other weights only loaded from
disk when they are used. While there have been many stud-
ies dedicated to on-device LLM inference, few studies focus
on fine-tuning LLMs on edge devices. Our work addresses
this gap in the existing literature.

On-device DNN Training. Since training requires much
more memory than inference [3], current research on edge
training primarily focuses on reducing the memory footprint
introduced during the training process. Gim et al. introduced
Sage [12], a framework that reduces memory usage through
graph-level and operator-level optimizations, incorporating
both gradient checkpointing and gradient accumulation tech-
niques. Melon [39] is a framework that intelligently allocates
tensors to the appropriate memory address by considering
the tensors’ lifetime, which enables training a model beyond
physical memory capacity. Both frameworks only consider
models as large as BERT. In FwdLLM [45], it achieves fine-
tuning billion-sized LLMs across mobile devices by utilizing
a backpropagation-free training method called perturbed
inferences. However, the generality of BP-free methods is
lower than that of traditional backpropagation methods. Ad-
ditionally, FwdLLM is built upon federated learning across a
large number of mobile devices to ensure the model conver-
gence speed and training time. Confidant instead employs

the traditional backpropagation to fine-tune LLMs on mo-
bile devices, providing more generality and requiring fewer
mobile devices.

Co-execution of Multiple Processors. Existing works of
multi-processor co-execution mainly concentrate on lever-
aging the on-device CPU and GPU to compute DNN paral-
lelly. Wang et al. [40] proposed OPTiC that achieved optimal
co-execution by automatically partitioning the DNN work-
load and selecting the operating frequency of processors

while satisfying hardware thermal constraints. In contrast,
player [19] and CoDL[14] utilized the latency estimation of
DNN operators to reduce the idle time of processors, thereby
maximizing both CPU and GPU computation time. To es-
timate the latency, player employed a FLOPs-based linear-
regression model, while CoDL adopted a non-linear and

concurrency-aware mathematical formula. NN-Stretch [41]

transformed a long and narrow model into a model with sev-
eral independent branches to achieve parallel computation of

branches on multiple processors. We note that current stud-
ies are designed for on-device DNN inference. Our proposed
multi-processor scheduler is applied to on-device fine-tuning,
which accelerates both forwarding and backwarding.

7 CONCLUSION

In this paper, we have proposed and implemented Confidant,
a collaborative training framework for fine-tuning LLMs
on various edge devices across different DNN frameworks.
Leveraging pipeline parallel training, Confidant reduces the
average memory usage on each device, achieving efficient
fine-tuning through memory-aware dynamic model parti-
tioning and an intra-device multi-processor scheduler. Ad-
ditionally, a cross-framework adapter enables fine-tuning
across different DNN frameworks. Confidant also introduces
a hybrid fault tolerance mechanism to offer strong robust-
ness against both predictable and unpredictable faults during
collaborative training. Experiments on practical mobile de-
vices have demonstrated that Confidant achieved up to 5.56
times acceleration in the experimental settings, realizing
computation- and memory-efficient, and robust collabora-
tive training on mobile devices. Furthermore, we have also
successfully fine-tuned billion-sized LLMs using only three
mobile devices with Confidant.

REFERENCES

[1] Android Studio. 2023. Profile battery usage with Batterystats
and Battery Historian. https://developer.android.google.cn/topic/
performance/power/setup-battery-historian.html. (2023). Accessed
on November 19, 2023.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. NeurIPS (2020).

[3] Tianqgi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174 (2016).

[4] Yuhao Chen, Qiangian Yang, Shibo He, Zhiguo Shi, Jiming Chen, and
Mohsen Guizani. 2023. FTPipeHD: A Fault-Tolerant Pipeline-Parallel
Distributed Training Approach for Heterogeneous Edge Devices. IEEE
Transactions on Mobile Computing (2023).

[5] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and
Youngjin Kwon. 2023. {EnvPipe}: Performance-preserving {DNN}
Training Framework for Saving Energy. USENIX ATC (2023).

[6] Flask developers. 2022. Flask. https://flask.palletsprojects.com/en/3.0.
x/. (2022).

[7] Java Spark developers. 2022. Java Spark. https://sparkjava.com/.
(2022).

[8] ONNX Runtime developers. 2021.
onnxruntime.ai/. (2021).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[10] Angela Fan, Edouard Grave, and Armand Joulin. 2019. Reducing
transformer depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556 (2019).

ONNX Runtime. https://

https://developer.android.google.cn/topic/performance/power/setup-battery-historian.html
https://developer.android.google.cn/topic/performance/power/setup-battery-historian.html
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/
https://sparkjava.com/
https://onnxruntime.ai/
https://onnxruntime.ai/

Confidant: Customizing Transformer-based LLMs via Collaborative Training on Mobile Devices

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[26]
[27]

(28]

[29]

Forbes. 2023. What Large Models Cost You — There Is No Free AL
Lunch. https://www.forbes.com/sites/craigsmith/2023/09/08/what-
large-models-cost-you--there-is-no-free-ai-lunch. (2023). Accessed
on March 11, 2024.

In Gim and JeongGil Ko. 2022. Memory-efficient DNN training on
mobile devices. MobiSys (2022).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685
(2021).

Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren,
and Yaoxue Zhang. 2022. Codl: efficient cpu-gpu co-execution for
deep learning inference on mobile devices. Mobisys (2022).

Shiqi Jiang, Lihao Ran, Ting Cao, Yusen Xu, and Yunxin Liu. 2020.
Profiling and optimizing deep learning inference on mobile GPUs.
ACM APSys (2020).

Xiaotang Jiang, Huan Wang, Yiliu Chen, Zigi Wu, Lichuan Wang,
Bin Zou, Yafeng Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei
Lv, and Zhihua Wu. 2023. MNN: A Universal and Efficient Inference
Engine. MLSys (2023).

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim, Ankur
Kumar, Sungsoo Kim, Abhinav Garg, and Changwoo Han. 2020. A
review of on-device fully neural end-to-end automatic speech recog-
nition algorithms. ACSSC (2020).

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik,
Michael W Mahoney, Amir Gholami, and Kurt Keutzer. 2023. Specula-
tive Decoding with Big Little Decoder. NeurIPS (2023).

Youngsok Kim, Joonsung Kim, Dongju Chae, Dachyun Kim, and Jang-
woo Kim. 2019. player: Low latency on-device inference using coop-
erative single-layer acceleration and processor-friendly quantization.
EuroSys (2019).

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence
McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Reducing activation recomputation in large transformer
models. MLSys (2023).

Pengzhen Li, Erdem Koyuncu, and Hulya Seferoglu. 2021. Respipe:
Resilient model-distributed dnn training at edge networks. ICASSP
(2021).

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang,
Dawn Song, and Ion Stoica. 2021. Terapipe: Token-level pipeline
parallelism for training large-scale language models. PMLR.
Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao
Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christo-
pher Re, et al. 2023. Deja vu: Contextual sparsity for efficient llms at
inference time. ICML (2023).

Meta Platforms, Inc. 2024. Building Meta’s GenAl Infrastruc-
ture. https://engineering.fb.com/2024/03/12/data- center-engineering/
building-metas-genai-infrastructure/. (2024).

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized pipeline parallelism for DNN
training. (2019).

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA,
release: 10.2.89. (2020). https://developer.nvidia.com/cuda-toolkit
OpenAl 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774
(2023).

Kazuki Osawa, Shigang Li, and Torsten Hoefler. 2023. PipeFisher:
Efficient Training of Large Language Models Using Pipelining and
Fisher Information Matrices. MLSys (2023).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised multi-
task learners. OpenAlblog (2019).

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you
don’t know: Unanswerable questions for SQuAD. ACL (2018).

Erik F Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition.
HLT-NAACL (2003).

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108 (2019).

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training
multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053 (2019).

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang,
and Denny Zhou. 2020. Mobilebert: a compact task-agnostic bert for
resource-limited devices. ACL (2020).

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu
Yang, Marco Donato, Victor Sanh, Paul Whatmough, Alexander M
Rush, David Brooks, et al. 2021. Edgebert: Sentence-level energy
optimizations for latency-aware multi-task nlp inference. MICRO
(2021).

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen
Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023.
Stanford Alpaca: An Instruction-following LLaMA model. https://
github.com/tatsu-lab/stanford_alpaca. (2023).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971 (2023).

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner,
Frangoise Beaufays, and Daniel Ramage. 2019. Federated evaluation
of on-device personalization. arXiv preprint arXiv:1910.10252 (2019).
Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan,
Xin Jin, Gang Huang, Yunxin Liu, and Xuanzhe Liu. 2022. Melon:
Breaking the memory wall for resource-efficient on-device machine
learning. Mobisys (2022).

Sigi Wang, Gayathri Ananthanarayanan, and Tulika Mitra. 2018. OP-
TiC: Optimizing collaborative CPU-GPU computing on mobile devices
with thermal constraints. IEEE transactions on computer-aided design
of integrated circuits and systems 38, 3 (2018), 393-406.

Jianyu Wei, Ting Cao, Shijie Cao, Shiqi Jiang, Shaowei Fu, Mao Yang,
Yanyong Zhang, and Yunxin Liu. 2023. NN-Stretch: Automatic Neural
Network Branching for Parallel Inference on Heterogeneous Multi-
Processors. MobiSys (2023).

Wikipedia contributors. 2023. Java Native Interface — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Java_Native_Interface&oldid=1166267665. (2023). [Online; accessed
3-October-2023].

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and
Song Han. 2023. Smoothquant: Accurate and efficient post-training
quantization for large language models. ICML (2023).

Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei
Xu, and Xuanzhe Liu. 2023. LLMCad: Fast and Scalable On-device
Large Language Model Inference. arXiv preprint arXiv:2309.04255
(2023).

Mengwei Xu, Yaozong Wu, Dongqi Cai, Xiang Li, and Shangguang
Wang. 2023. Federated fine-tuning of billion-sized language models
across mobile devices. arXiv preprint arXiv:2308.13894 (2023).

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao,
Yuqing Yang, and Yunxin Liu. 2021. Nn-meter: Towards accurate
latency prediction of deep-learning model inference on diverse edge
devices. Mobisys (2021).

https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch
https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://developer.nvidia.com/cuda-toolkit
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=1166267665
https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=1166267665

[47] Yichen Zhu, Minjie Zhu, Ning Liu, Zhicai Ou, Xiaofeng Mou, and Language Model. arXiv preprint arXiv:2401.02330 (2024).
Jian Tang. 2024. LLaVA-¢: Efficient Multi-Modal Assistant with Small

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Executing LLMs on Mobile Devices
	2.2 Pipeline Model Parallel Training

	3 System Design
	3.1 Design Overview
	3.2 Memory-aware Dynamic Model Partitioning
	3.3 Intra-device Multi-processor Scheduler
	3.4 Hybrid Fault Tolerance Mechanism
	3.5 Cross-framework Adapter

	4 Implementation
	5 Evaluations
	5.1 Experiment Settings
	5.2 Training Performance
	5.3 Multi-processor Scheduler Acceleration
	5.4 Hybrid Fault Tolerance Overhead
	5.5 Cross-framework Adapter Overhead
	5.6 Energy Consumption
	5.7 Attempts on Billion-sized LLMs

	6 Related Works
	7 Conclusion
	References

